Painlevé integrability and multi-dromion solutions of the 2+1 dimensional AKNS system

Sen-yue Lou ${ }^{1,2, a}$, Ji Lin ${ }^{1,3,4}$, and Xiao-yan Tang ${ }^{1}$
${ }^{1}$ Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, PR China
${ }^{2}$ Physics Department of Ningbo University, Ningbo 315211, PR China
${ }^{3}$ Center of Nonlinear Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
${ }^{4}$ Department of Physics, Zhejiang Normal University, Jinghua 321004, PR China

Received 31 January 2001 and Received in final form 15 May 2001

Abstract

The Painlevé integrability of the $2+1$ dimensional AKNS system is proved. Using the standard truncated Painlevé expansion which corresponds to a special Bäcklund transformation, some special types of the localized excitations like the solitoff solutions, multi-dromion solutions and multi-ring soliton solutions are obtained.

PACS. 02.30.Ik Integrable systems - 02.30.Jr Partial differential equations - 05.45.Yv Solitons

1 Introduction

In (1+1)-dimensions, the AKNS (Ablowitz-Kaup-NewellSegur) system is one of the most important physical models. In ($2+1$)-dimensions, there exist several possible integrable extensions for the AKNS system, for example the DS (Davey-Stewartson) type system [1] and the Breaking soliton type system [2]. The (1+1)-dimensional AKNS system can be obtained from the usual symmetry constraint of the KP (Kadomtsev-Petviashvili) equation. Recently, we have obtained another type of (2+1)dimensional AKNS system:

$$
\begin{gather*}
i p_{t}+p_{x x}+p u_{x}=0 \tag{1}\\
-i q_{t}+q_{x x}+q u_{x}=0 \tag{2}\\
u_{y}+p q=0 \tag{3}
\end{gather*}
$$

from the inner parameter dependent symmetry constraints of the KP equation [3]. When we take $y=x$, the system ($1-3$) is reduced to the usual $(1+1)$-dimensional AKNS system. If q is selected as the complex conjugation, then the system (1-3) can be considered as the asymmetric part of the DS system.

One of the most powerful method to prove the integrability of a model is the so-called Painlevé analysis developed by WTC (Weiss-Tabor-Canvela) [4]. Furthermore, the Painlevé analysis can also be used to find some exact solutions no matter whether the model is integrable or not. If one needs only to prove the Painlevé property of a model one may use the Kruskal's simplification for the

[^0]WTC approach [5]. If one hopes to find some more information from the model, one has to use the original WTC approach or some extended forms [6-8]. In this paper, we combine the standard WTC approach with the Kruskal's simplification to simplify the proof of the Painlevé integrability and to obtain some exact solutions at the same time. In Section 2 of this paper, we study the Painlevé integrability of the $(2+1)$-dimensional AKNS system. In Section 3, we use the truncated Painlevé expansion to obtain a special type of solution of the model with some arbitrary functions. In the last section, some special types of localized solutions like the multi-solitoff solutions, multidromion solutions and the multi-ring soliton solutions are discussed.

2 Painlevé integrability of the (2+1)-dimensional AKNS system

According to the standard WTC approach, if the (2+1)dimensional AKNS system is Painlevé integrable, then all the possible solutions of the model can be written as

$$
\begin{equation*}
p=\sum_{k=0}^{\infty} p_{k} f^{k+\alpha}, q=\sum_{k=0}^{\infty} q_{k} f^{k+\beta}, u=\sum_{k=0}^{\infty} u_{k} f^{k+\gamma} \tag{4}
\end{equation*}
$$

with sufficient arbitrary functions among p_{k}, q_{k}, u_{k} in addition to f, where α, β and γ should all be the negative integer. In other words, the solutions of the model are single valued about an arbitrary singularity manifold.

To fix the constants α, β and γ, one use the standard leading order analysis. By substituting $p \sim p_{0} f^{\alpha}, q \sim q_{0} f^{\beta}$
and $u \sim u_{0} f^{\gamma}$ into (1-3) and comparing the leading order terms for $f \sim 0$, we get only one possible branch

$$
\begin{align*}
\alpha & =\beta=\gamma=-1 \tag{5}\\
u_{0} & =2 f_{x}, \quad q_{0} p_{0}=2 f_{x} f_{y} . \tag{6}
\end{align*}
$$

Substituting (4) with (5) and (6) into (1-3) and vanishing all the coefficients of the powers f^{k}, we can obtain the recursion relations to determine the functions u_{k}, p_{k}, and q_{k} :

$$
\begin{align*}
\left(\begin{array}{ccc}
k(k-3) f_{x}^{2} & 0 & (k-1) f_{x} p_{0} \\
0 & k(k-3) f_{x}^{2} & (k-1) f_{x} q_{0} \\
q_{0} & p_{0} & (k-1) f_{y}
\end{array}\right) & \left(\begin{array}{l}
p_{k} \\
q_{k} \\
u_{k}
\end{array}\right)= \\
& \left(\begin{array}{c}
P_{k} \\
Q_{k} \\
U_{k}
\end{array}\right) \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
P_{k}= & -i\left(p_{k-2, t}+(k-2) p_{k-1} f_{t}\right)-p_{k-2, x x} \\
& -2(k-2) p_{k-1, x} f_{x}-(k-2) p_{k-1} f_{x x} \\
& -\sum_{i=0}^{k-1} u_{i, x} p_{k-i-1}-\sum_{i=0}^{k-1}(i-1) f_{x} u_{i} p_{k-i} \tag{8}\\
Q_{k}= & i\left(q_{k-2, t}+(k-2) q_{k-1} f_{t}\right)-q_{k-2, x x} \\
& -2(k-2) q_{k-1, x} f_{x}-(k-2) q_{k-1} f_{x x} \\
& -\sum_{i=0}^{k-1} u_{i, x} q_{k-i-1}-\sum_{i=1}^{k-1}(i-1) f_{x} u_{i} q_{k-i} \tag{9}\\
U_{k}= & -u_{k-1, y}-\sum_{i=1}^{k-1} p_{i} q_{k-i} \tag{10}
\end{align*}
$$

with $p_{k}=q_{k}=u_{k}=0$ for $k<0$. From the matrix equation (7), it is easy to know that if the determinant

$$
\begin{equation*}
\Delta \equiv \operatorname{det} A=(k+1) k(k-1)(k-3)(k-4) f_{x}^{4} f_{y} \tag{11}
\end{equation*}
$$

of the coefficient matrix

$$
A \equiv\left(\begin{array}{ccc}
k(k-3) f_{x}^{2} & 0 & (k-1) f_{x} p_{0} \tag{12}\\
0 & k(k-3) f_{x}^{2} & (k-1) f_{x} q_{0} \\
q_{0} & p_{0} & (k-1) f_{y}
\end{array}\right)
$$

is not equal to zero, then the functions p_{k}, q_{k} and u_{k} can be obtained from (7) uniquely. When

$$
\begin{equation*}
k=-1,0,1,3,4, \tag{13}
\end{equation*}
$$

resonances occur. The resonance at $k=-1$ corresponds to that the singularity manifold f being arbitrary. If the
model is Painlevé integrable, we require four resonance conditions at $k=0,1,3,4$ which are satisfied identically such that the other four arbitrary functions among p_{k}, q_{k}, u_{k} can be introduced into the general series expansion (4). From the leading order analysis result (6) we know that the resonance at $k=0$ is satisfied identically and one of p_{0} and q_{0} is arbitrary. For $k=1$, we can obtain

$$
\begin{align*}
& p_{1}=-\frac{i p_{0} f_{t}+2 p_{0 x} f_{x}-p_{0} f_{x x}}{f_{x} u_{0}} \tag{14}\\
& q_{1}=\frac{i q_{0} f_{t}-2 q_{0 x} f_{x}+q_{0} f_{x x}}{f_{x} u_{0}} \tag{15}
\end{align*}
$$

and the resonance condition

$$
\begin{align*}
2 u_{0 y} f_{x}^{2}-\left(2 q_{0 x} f_{x}-q_{0} f_{x x}\right) & p_{0} \\
& -\left(2 p_{0 x} f_{x}-p_{0} f_{x x}\right) q_{0}=0 \tag{16}
\end{align*}
$$

It is straightforward to see that the resonance condition (16) is satisfied identically because of (6). For $k=2$, (7) gives us

$$
\begin{align*}
p_{2}= & \frac{1}{6 f_{x}^{2} q_{0}}\left(p_{0}\left(i q_{0 t}-q_{1} u_{0 x}-q_{0 x x}\right)\right. \\
& +2 q_{0}\left(i p_{0 t}+p_{0 x x}+p_{1} u_{0 x}\right) \\
& \left.+u_{0}\left(f_{y} u_{1 x}-p_{1} q_{1} f_{x}-f_{x} u_{1 y}\right)\right) \tag{17}\\
q_{2} & =\frac{1}{6 f_{x}^{2} p_{0}}\left(-q_{0}\left(i p_{0 t}+p_{1} u_{0 x}+p_{0 x x}\right)\right. \\
& +2 p_{0}\left(-i q_{0 t}+q_{0 x x}+q_{1} u_{0 x}\right) \\
& \left.+u_{0}\left(f_{y} u_{1 x}-p_{1} q_{1} f_{x}-f_{x} u_{1 y}\right)\right) \tag{18}\\
u_{2} & =\frac{1}{6 f_{x}^{2} f_{y}}\left(\left(-2 u_{1 x} p_{0}-i p_{0 t}-p_{0 x x}-u_{0 x} p_{1}\right) q_{0}\right. \\
& \left.+\left(-q_{0 x x}+i q_{0 t}-u_{0 x} q_{1}\right) p_{0}-2 f_{x}^{2} u_{1 y}-2 f_{x}^{2} q_{1} p_{1}\right) \tag{19}
\end{align*}
$$

For $k=3$, the component form of (7) reads

$$
\begin{align*}
& \left(2 f_{x} u_{3}+u_{2 x}\right) p_{0}+\left(f_{x x}+u_{0 x}+i f_{t}\right) p_{2} \\
& \quad+\left(u_{1 x}+f_{x} u_{2}\right) p_{1}+2 p_{2 x} f_{x}+i p_{1 t}+p_{1 x x}=0 \tag{20}\\
& \quad \begin{array}{l}
\left(2 f_{x} u_{3}+u_{2 x}\right) q_{0}+\left(f_{x x}+u_{0 x}-i f_{t}\right) q_{2} \\
\quad+\left(u_{1 x}+f_{x} u_{2}\right) q_{1}+2 q_{2 x} f_{x}-i q_{1 t}+q_{1 x x}=0 \\
\quad \\
u_{2 y}+2 u_{3} f_{y}+q_{2} p_{1}+q_{1} p_{2}+q_{3} p_{0}+q_{0} p_{3}=0 .
\end{array}, .
\end{align*}
$$

Now, to verify the remaining resonance conditions at $k=3$ and $k=4$, we use the Kruskal's simplification, i.e.:

$$
\begin{align*}
& f=x+\psi(y, t), p_{k}=p_{k}(y, t) \\
& \tag{23}\\
& \quad q_{k}=q_{k}(y, t), u_{k}=u_{k}(y, t) .
\end{align*}
$$

One can use this simplification without loss of the generality to prove the Painlevé integrability, where $\psi(y, t)$ is an
arbitrary function of $\{y, t\}$. Under the simplification (23), the known results become

$$
\begin{align*}
& u_{0}=2, q_{0} p_{0}=2 \psi_{y}, p_{1}=-\frac{1}{2} i p_{0} \psi_{t}, q_{1}=\frac{1}{2} i q_{0} \psi_{t} \tag{24}\\
& p_{2}=\frac{1}{12 \psi_{y}}\left(2 i \psi_{y} p_{0 t}-p_{0}\left(2 u_{1 y}+\psi_{t}^{2} \psi_{y}-2 i \psi_{t y}\right)\right) \tag{25}\\
& q_{2}=-\frac{1}{12 \psi_{y}}\left(2 i \psi_{y} q_{0 t}+q_{0}\left(2 u_{1 y}+\psi_{t}^{2} \psi_{y}+2 i \psi_{t y}\right)\right) \tag{26}\\
& u_{2}=\frac{1}{6 f_{y}}\left(i q_{0 t} p_{0}-i p_{0 t} q_{0}-2 u_{1 y}-2 q_{1} p_{1}\right) \tag{27}
\end{align*}
$$

Using (24-27), we can obtain

$$
\begin{equation*}
u_{3}=-\frac{1}{4} \psi_{t t} \tag{28}
\end{equation*}
$$

from (20) while (21) becomes a resonance condition which is really satisfied identically because of (24-27) and (28). p_{3} and q_{3} are related by (22) which can be simplified to

$$
\begin{equation*}
-\psi_{t t} \psi_{y}-\psi_{t y} \psi_{t}+2 u_{2 y}+2 q_{0} p_{3}+2 q_{3} p_{0}=0 \tag{29}
\end{equation*}
$$

that means one of p_{3} and q_{3} is arbitrary. For $k=4$, the resonance condition reads

$$
\begin{align*}
u_{3 y} & +q_{3} p_{1}+q_{1} p_{3}+q_{2} p_{2} \\
& +\frac{1}{4}\left(-u_{2} q_{2}+i q_{2 t}+2 i q_{3} \psi_{t}-2 u_{3} q_{1}\right) p_{0} \\
& +\frac{1}{4}\left(-u_{2} p_{2}-i p_{2 t}-2 i p_{3} \psi_{t}-2 u_{3} p_{1}\right) q_{0}=0 \tag{30}
\end{align*}
$$

while p_{4} and q_{4} are expressed as

$$
\begin{align*}
& p_{4}=-\frac{1}{4}\left(3 u_{4} p_{0}+i p_{2 t}+2 i p_{3} \psi_{t}+2 u_{3} p_{1}+u_{2} p_{2}\right) \tag{31}\\
& q_{4}=\frac{1}{4}\left(i q_{2 t}-3 u_{4} q_{0}+2 i q_{3} \psi_{t}-2 u_{3} q_{1}-u_{2} q_{2}\right) \tag{32}
\end{align*}
$$

for arbitrary u_{4}. After substituting (24-29), (31) and (32) into (30) one can see that the resonance condition (30) is also satisfied identically. Hence the $(2+1)$-dimensional AKNS system (1-3) is Painlevé integrable.

3 General solution from the truncated Painlevé expansion

It is known that the Painlevé analysis can also be used to obtain other interesting properties [4]. In this paper, we use the truncated Painlevé expansion to obtain some interesting exact solutions. If we take

$$
\begin{equation*}
q_{k}=p_{k}=u_{k}=0, \quad k \geq 2 \tag{33}
\end{equation*}
$$

(4) with (5) becomes a truncated expansion

$$
\begin{equation*}
p=\frac{p_{0}}{f}+p_{1}, q=\frac{q_{0}}{f}+q_{1}, u=\frac{u_{0}}{f}+u_{1} . \tag{34}
\end{equation*}
$$

Substituting (34) into (1-3) or substituting (33) directly to $(14-22)$, we know that $\left\{p_{1}, q_{1}, u_{1}\right\}$ is also a solution
of the ($2+1$)-dimensional AKNS system. In other words, the truncated expansion (24) is really a Bäcklund transformation. For simplicity later, we select the seed solution

$$
\begin{equation*}
p_{1}=0, q_{1}=0, u_{1}=g(x, t) \equiv g \tag{35}
\end{equation*}
$$

where g is an arbitrary function of $\{x, t\}$. Under the special selection of (35), all the remained equations to solve the functions p_{0} and f are simplified to

$$
\begin{align*}
& f_{x y}=0 \tag{36}\\
& i p_{0 t}+p_{0 x x}+p_{0} g_{x}=0 \tag{37}\\
& -2 f_{x} p_{0 x}-i f_{t} p_{0}+f_{x x} p_{0}=0 \tag{38}\\
& -p_{0} p_{0 x y}+p_{0 y} p_{0 x}=0 \tag{39}
\end{align*}
$$

with

$$
\begin{equation*}
q_{0}=\frac{2 f_{y} f_{x}}{p_{0}}, u_{0}=2 f_{x} \tag{40}
\end{equation*}
$$

If we fix $g(x, t)$ as

$$
\begin{equation*}
g(x, t)=-\int\left(F_{1 x x}-F_{1 x}^{2}\right) \mathrm{dx}-i F_{0 t} x+F_{3} \tag{41}
\end{equation*}
$$

then the only solution of $(36-39)$ is

$$
\begin{align*}
& f=f_{1}(x, t)+f_{2}(y) \\
& \qquad p_{0}=\exp \left(F_{1}(x)+F_{2}(y)+F_{0}(t)\right) \tag{42}
\end{align*}
$$

where $f_{2}(y) \equiv f_{2}, F_{1}(x) \equiv F_{1}, F_{2}(y) \equiv F_{2}, F_{0}(t) \equiv F_{0}$ and $F_{3}(t) \equiv F_{3}$ are all arbitrary functions of the indicated variables while $f_{1}(x, t) \equiv f_{1}$ is related to F_{1} by

$$
\begin{equation*}
2 f_{1 x} F_{1 x}+i f_{1 t}-f_{1 x x}=0 \tag{43}
\end{equation*}
$$

Now it is interest to study the structure of the potential $p q$. From (34, 35, 40) and (42), we have

$$
\begin{equation*}
p q=\frac{2 f_{2 y} f_{1 x}}{\left(f_{1}+f_{2}\right)^{2}} \tag{44}
\end{equation*}
$$

4 Special examples

Because of the arbitrariness of the functions F_{1} and f_{2}, the structure of $p q$ shown by (44) is quite rich. Some special examples are listed here:

4.1 Multi-solitoff solutions

If we take f_{1} as t independent then we can consider $f_{1}(x)$ is arbitrary while F_{1} is determined by (43). Furthermore, we can take
$f_{2}=\sum_{i=1}^{N} b_{i} \exp \left(l_{i} y+y_{0 i}\right), \quad f_{1}=\sum_{i=1}^{M} c_{i} \exp \left(k_{i} x+x_{0 i}\right)$,

Fig. 1. A solitoff solution driven by two perpendicular line solitons with the selection (46).
where $x_{0 i}, y_{0 i}, b_{i}, c_{i}, k_{i}$ and l_{i} are arbitrary constants and M and N are arbitrary positive integers. Under the selection (45), we obtain the first type of the multiple straight line solitons. Figure 1 shows a special structure of a two static resonant straight line solitons for the quantity $p q$ with

$$
\begin{equation*}
f_{1}=1+\exp (4 x+1), f_{2}=\exp (-y) \tag{46}
\end{equation*}
$$

From Figure 1, one can see that two straight line solitons become only one half straight line soliton because of the resonance effect. This type of half straight line soliton is called solitoff solution in the literature [9]. In reference [9] solitoff solutions obtained for other types of models like the asymmetric Nizhnik-Novikov-Veselov (NNV) equation and the $(2+1)$-dimensional dispersive long wave equation. It seems that the solitoff solutions are also a quite general phenomena in ($2+1$)-dimensional models.

4.2 Multi-dromion solutions

If we select the functions f_{1} and f_{2} themselves as some kinds of multiple straight line solitons parallel to y and x axes respectively, then (27) denotes some types of multiple dromion solutions. For instance, if we take

$$
\begin{align*}
& f_{1}=C+\sum_{i=1}^{M} a_{i} \tanh \left(k_{i} x+x_{i 0}\right) \tag{47}\\
& f_{2}=\sum_{i=1}^{N} b_{i} \tanh \left(K_{i} y+y_{i 0}\right) \tag{48}
\end{align*}
$$

where $K_{i}, k_{i}, x_{i 0}, y_{i 0}, a_{i}, b_{i}$ and $C>\sum_{i=1}^{M}\left|a_{i}\right|+$ $\sum_{i=1}^{N}\left|b_{i}\right|$ are all arbitrary constants, then the quantity $p q$ shown by (44) denotes an $M \times N$ dromion solution. The $M \times N$ dromions are located at the $M \times N$ "lattice"
and the $M \times N$ lattice points are just the cross points of $M+N$ "ghost" straight line solitons. Figure 2 shows a six dromion solution (44) with

$$
\begin{align*}
f_{1}= & 3+\frac{1}{2} \tanh \left(\frac{3}{2} x\right)+\frac{1}{2} \tanh \left(\frac{2}{3} x+\frac{9}{2}\right) \\
& +\frac{1}{2} \tanh (2 x-12) \tag{49}\\
f_{2}= & \frac{1}{2} \tanh (y)+\frac{1}{2} \tanh (2 y-10) . \tag{50}
\end{align*}
$$

The multiple dromion solutions have been found for many other types of models $[10,11]$. For instance, the dromion solution of the DS equation is found by Fokas and Santini [10]. In reference [10], the dromion solutions are constructed by the summations of the exponential functions. The dromion functions may have quite rich structures because we can use summations of any types of localized functions as well as rapidly divergent functions for f_{1} and f_{2} of (44).

4.3 Saddle-type multiple ring soliton solutions

In high dimensions, in addition to the point-like (soliton solutions with one or more peaks), there may be some other types of localized coherent solutions. In particular, some different types of single ring (a closed curve) soliton solutions have been found in some $(2+1)$-dimensions, for example, the single plateau-type, basin-type and bowltype ring solitons [12] for the ($2+1$)-dimensional sineGordon equation [13] and the single saddle-type of ring soliton solutions for the NNV equation, ANNV equation and the dispersive long wave equations [14].

From the general solution (44), we can see that the saddle type of ring soliton solution also exists for the (2+1)dimensional AKNS system by selecting the arbitrary functions appropriately. Figure 3 shows a two saddle type ring

Fig. 2. A six dromion solution related to the selections (49) and (50).

Fig. 3. A special two saddle type ring soliton solution (44) with (51) and (52).
soliton structure for the quantity $p q$ shown by (44) with the selection

$$
\begin{align*}
f_{1}= & \frac{1}{10} \exp \left(-\left(\frac{4 x}{5}\right)^{2}+25\right) \\
& +\exp \left(-\frac{6}{5}\left(x-\frac{17}{2}\right)^{2}+25\right) \tag{51}\\
f_{2}= & \frac{1}{10} \exp \left(y^{2}\right)+\exp \left(\left(y-\frac{17}{2}\right)^{2}\right) \tag{52}
\end{align*}
$$

In summary, for the $(2+1)$-dimensional Painlevé integrable AKNS system, a quite general solution with some
arbitrary functions of x, y and t respectively can be obtained by using the truncated Painlevé expansion. By selecting the arbitrary functions appropriately, we may obtain many new types of multi-soliton solutions because of the existence of some arbitrary functions. The multiple localized excitation (44) may be solitoffs, dromions and saddle type ring solitons etc, and there is still more in the rich soliton structure in high dimensions worthy of study.

The author is in debt to Prof. H-y Ruan for fruitful discussions. The work was supported by the National Outstanding Youth Foundation of China, the Doctoral Program and the National Natural Science Foundation of Zhejiang Province of China.

References

1. A. Davey, K. Stewartson, Proc. R. Soc. A 338, 101 (1974).
2. F. Calogero, A. Degasperis, Nuovo Cim. B 31, 201 (1976); 39, 54 (1977); O.I. Bogoyovlenskii, Usp. Mat. Nauk. 45, 17 (1990); Izv. Akad. Nauk. SSSR Ser. Mat. 53234 (1989) and 907; 54, 1123 (1989); Y.S. Li, Y.J. Zhang, J. Phys. A 26, 7487 (1993); S.-y. Lou, Commun. Theor. Phys. 28, (1997) 41.
3. S.-y. Lou, X.-b. Hu, J. Math. Phys. 38, 6401 (1997).
4. J. Weiss, M. Tabor, G., Carnevale, J. Math. Phys. 24, 522 (1983); A. Ramani, B. Grammaticos, T. Bountis, Phys. Rep. 180, 159 (1989).
5. M. Jimbo, M.D. Kruskal, T. Miwa, Phys. Lett. A 92, 59 (1982).
6. A.P. Fordy, A. Pickering, Phys. Lett. A. 160, 347 (1991).
7. R. Conte, Phys. Lett. A 140, 383 (1989).
8. S.-y. Lou, Phys. Rev. Lett. 80, 5027 (1998); S.-y. Lou, Z. Naturforsch. 53a, 251 (1998).
9. H.-y. Ruan, Y.-x. Chen, Phys. Rev. E 62, 5738 (2000); T. Alagesan, A. Uthayakumar, K. Porsezian, J. Phys. Soc. Jpn 66, 1288 (1997).
10. A.S. Fokas, P.M. Santini, Phys. Rev. Lett. 25, 1329 (1989); Physica D 44, 99 (1990).
11. J. Hietarinta, Phys. Lett. A 149, 133 (1990); R. Radha, M. Lakshmanan J. Math. Phys. 35, 4746 (1994).
12. S.-y. Lou, J. Math. Phys. 41, 6509 (2000).
13. B.G. Konopelchenko, C. Rogers, Phys. Lett. A. 158, 391 (1991); J. Math. Phys. 34, 214 (1993).
14. S.-y. Lou, Phys. Lett. A 277, 94 (2000); S.-y. Lou, H.-y. Ruan, J. Phys. A 30, 305 (2001); X.-y. Tang, S.-y. Lou, Abundant coherent structures of the Dispersive Long-wave Equation in (2+1)-dimensional spaces, preprint (2001).

[^0]: ${ }^{\text {a }}$ e-mail: sylou@mail.sjtu.edu.cn

